

for Corrupted Networks Hidden Communication System **HICCUPS:**

Krzysztof Szczypiorski

Warsaw University of Technology Institute of Telecommunications Poland

10th International Multi-Conference on Advanced Computer Systems – ACS'2003

Outline

- Historical background
- Related work
- HICCUPS concept
- Network environment for HICCUPS
- Hidden data channels
- ◆ HICCUPS operation
- ◆ Functional parts of HICCUPS
- Example of implementation framework for wireless local area networks (WLAN) IEEE 802.11

<u>HI</u>dden <u>C</u>ommuni<u>C</u>ation system for corr<u>UP</u>ted network<u>S</u>

- medium networks developed at Warsaw University of Technology, Poland Polish patent pending P.359660 Original network steganographic system for shared
- hiccup (Merriam-Webster dictionary)

Variant: also hiccough

– noun

1: a spasmodic inhalation with closure of the glottis accompanied by a

peculiar sound
2: an attack of hiccuping - usually used in plural but singular or plural in constr.

intransitive verb; inflected forms: hiccuped also hiccupped; hiccuping also

hiccupping to make a hiccup; also: to be affected with hiccups

Szczypiorski - HICCUPS

cu

Historical Background

Human vs. Human Problem

Tatoo

- http://www.si.umich.edu/spies/methods-ink.html
 http://www.si.umich.edu/spies/methods-mask.html
- http://www.si.umicn.edu/spies/metrods-mask.ntm
 http://www.miki.hg.pl/fatoo%20maly/lmage72.jpg

Steganography was dedicated to hide information from human

Szczypiorski - HICCUPS

Related Work 1/2

- sound files, images and movies applications are equivalent of old In the TCP/IP protocol suite multimedia techniques – hidden data is distributed in
- Watermarking to protect intellectual property rights
- Network (protocol) steganography –
 machine vs. machine problem
- ◆ Field of knowledge established in scientific literature in 1996
- Discovered again after 911 (September 11th, 2001)

S

Szczypiorski - HICCUPS

Related Work 2/2

- A focus on transport and network layers hidden communication (because of WAN):
- Usage of optional fields
- Semantic changes
- Improper, but acceptable construction of protocol data units (packets)
- ♦ In a data link layer
- As above plus:
- Usage of unused transmission code space
- In LAN: modification of the collision detection system in Ethernet (Theodore G. Handel and Maxwell T. Sandford- Weapon Design Technology Group – Los Alamos National Laboratory)

Szczypiorski - HICCUPS

- Shared medium networks use broadcast medium (for example air) it creates possibility of "hearing" all frames with data transmitted in medium
- Hidden group with common knowledge
- Basic mode for steganographic system usage of I bandwidth hidden data channels (1% of frame size) usage of low

7

HICCUPS Concept 2/2

- A station sends corrupted (= with bad checksum) frame
- Remaining hidden stations are changing their mode of operation to the "corrupted frame mode" (high bandwidth almost 100% of frame size) for observers it looks like hiccups
- mechanisms to have an exquisite noise Additionally: usage of network protected by cryptographic

Szczypiorski - HICCUPS

TCP/IP protocol suite Application Transport Network layer LAN RM vs. TCP/IP Protocol Suite Reference Model IEEE LAN MAC sublayer: placement of **HICCUPS**

Szczypiorski - HICCUPS PHY - Physical Signalling Legend:
LLC - Link Layer Control
MAC - Medium Access Control Shared medium networks

Data Link

layer

Layer

PHY MAC E

for HICCUPS Properties of Network Environment

P1: shared medium network with possibility of frame's

- interception:

 CSMA (Carrier Sense Multiple Access)- Aloha

 CSMA/CD (CSMA with Collision Detection)- Ethernet

 CSMA/CA (CSMA with Collision Avoidance) WLAN IEEE
- 802.11
- Token Bus
- by initialization vectors publicly known method of cipher initiation for instance
- Code CRC Instance integrity ty mechanisms for encrypted one-way hash function, Cyclic frames tor Redundancy
- (CRC is rarely strong enough for protecting integrity, but it is used in WLAN IEEE 802.11 for such purpose)
 essential, **P2** and **P3** optional

P

Szczypiorski - HICCUPS

0

- HDC1: channel based on cipher's initialization vectors
- example destination and source) HDC2: channel based on MAC network addresses (for
- HDC3: channel based on integrity mechanism values (for example frame checksums)
- For network with P1 only: HDC2 and HDC3 are used

General HICCUPS Operation Scheme

Szczypiorski - HICCUPS

 $\frac{1}{2}$

- FP1: network cards dedicated, for example, to IEEE 802.11b/g; network cards should have possibility to control HDC1-HDC3 and data payload in MAC frame
- After investigations in network card market we found no interface that allows to produce frame with given
- Our work is focused on developing self-made network card or reprogramming existing software in available network cards
- The patent application P.359660 includes a proposal of the generic network card for HICCUPS
- **FP2**: management system to control HDC1-HDC3 and data payload in MAC frame

ದ

The Management System

- The management system (FP2) may be pertorm such functions: produced as software or hardware and should
- joining hidden group
- leaving hidden group
- providing interface to upper network layer to control HDC1-HDC3 and data payload in MAC frame
- with cryptographic extension:
- key agreement/key exchange
- key refresh
- encryption/decryption

- about 30% suite is 2-3% but mobility of station increases FER by Mean bit error rate can range from 10-3 to 10-7. Typical frame error rate (FER) for WLAN and TCP/IP protocol
- topology and medium access mechanism CSMA/CA P1.WLAN: wireless local area network with bus
- P2 WLAN: initiation by initialization vectors publicly known method of RC4 cipher
- P3.WLAN: integrity mechanisms for encrypted frames **CRC-32**

5

IEEE 802.11 Wired Equivalent Privacy

- 64-bit RC4 (effective 40-bit)
- 128-bit RC4 (effective 104-bit) vendor standard
- A sender and a receiver share secret key **k**
- initialization vector IV
- message **M**
- RC4(IV,k) generates keystream
- checksum c performed by CRC-32
- manual key distribution

Szczypiorski - HICCUPS

6

▶ HDC1.WLAN: channel based on RC4 initialization vectors: 24 b

HDC2.WLAN: channel based on MAC network addresses:

addresses:

Destination Address: 48-bit

Source Address: 48-bit

Receiver Address: 48-bit

Transmitter Address: 48-bit

◆ HDC3.WLAN: channel based on integrity mechanism values – armed with WEP: 32- lit

Legend:
part of frame protected by WEP

IEEE 802.11 MAC frame armed with WEP

Szczypiorski - HICCUPS

"Right to Talk" System for WLAN

- All stations involved in hidden communications will be keeping frame error rate (FER) worse than it really exists
- In reality there is no way to predict FER at specific point of wireless network environment

 only physical existence of station or sensor gives opportunity to measure frame error rate
- Keeping FER bad enough consists of generating corrupted packets with data useless for steganographic system

Szczypiorski - HICCUPS

 $\overline{\infty}$

- WLAN HICCUPS is a new network steganographic system dedicated to shared medium networks especially to
- demand bandwidth for steganographic purposes Main novelty of the system is usage of frames with bad checksums as a method of creating additional on-
- several bits-per-second) Elastic on-demand bandwidth: kilobits-per-second (not
- System can be applied to many of the existing wireless public networks (including sensor networks)

19

Thank you for your interest!

Krzysztof Szczypiorski

Warsaw University of Technology Institute of Telecommunication Poland

e-mail: K. Szczypiorski@tele.pw.edu.pl

- Ahsan K., Kundur D.: Practical Data Hiding in TCP/IP. In: Proceedings of Workshop on Multimedia Security at ACM Multimedia '02, Juan-les-Pins (on the French Riviera), December 2002

 Anderson, R. (Ed.): Proceedings of: Information Hiding First International Workshop, Cambridge, U.K., May 30 June 1, 1996, vol. 1174 of Lecture Notes in Computer Science, Springer-Verlag Inc.

 Aucsmith, D. (Ed.): Proceedings of: Information Hiding Second International Workshop, IH'98, Portland, Oregon, USA, April 14-17, 1998, vol. 1525 of Lecture Notes in Computer Science, Springer-Verlag Inc.
- 2
- ယ
- 4.
- Ġ Boyer L.: Firewall Bypass via Protocol Steganography – http://www.networkpenetration.com/protocol_steg.html
 Chmielewski A.: Utilization of Transmission Code Redundancy for Additional Data Stream. Ph.D. dissertation (in Polish), Warsaw University of Technology, 1988
- တ Fisk G., Fisk M., Papadopoulos C., Neil J.: Eliminating Steganography in Internet Traffic with Active Wardens. In: [13], pp. 29-46.
- Fluhrer S., Mantin I., Shamir A.: Weaknesses in the Key Scheduling Algorithm of RC4. In Proceedings of SAC 2001, Eighth Annual Workshop on Selected Areas in Cryptography (Toronto, Ontario, Canada, August 2001), pp. 1-24

References

- œ and Sandford M.: Hiding Data in the OSI Network Model. In: [2],
- 9 Mironov I.: (Not So) Random Shuffles of RC4. In: Proceedings of: CRYPTO 2002, 22nd Annual International Cryptology Conference Santa Barbara, California, USA, August 18-22, 2002, pp. 304-319, vol. 2442 of Lecture Notes in Computer Science, Springer-Verlag Inc.

 Moskowitz, I. S. (Ed.): Proceedings of: Information Hiding — 4th International Workshop, IH 2001, Pittsburgh, PA, USA, April 25-27, 2001, vol. 2137 of Lecture Notes in Computer Science, Springer-Verlag Inc.

 Petitcolas, F. A. P. (Ed.): Proceedings of: Information Hiding — 5th International Workshop, IH 2002, Noordwijkerhout, The Netherlands, October 7-9, 2002, vol. 2578 of Lecture Notes in Computer Science, Springer-Verlag Inc.

 Pfitzmann, A. (Ed.): Proceedings of: Information Hiding — Third International Workshop, IH-99, Dresden, Germany, September 29 — October 1, 1999, vol. 1768 of Lecture Notes in Computer Science, Springer-Verlag Inc.

 Rowland C. H.: Covert Channels in the TCP/IP Protocol Suite. Psionics Technologies, November 14, 1996

 Xylomenos G., Polyzos G.C., Mahonen P. and Saaranen M.: TCP Performance Issues over Wireless Links. IEEE Communications Magazine, April 2001
 - 5
- - 12
 - 걾